Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells.
نویسندگان
چکیده
Neuronal Ca2+ influx via NMDA receptors (NMDARs) is essential for the development and plasticity of synapses but also triggers excitotoxic cell death when critical intracellular levels are exceeded. Therefore, finely equilibrated mechanisms are necessary to ensure that NMDAR function is maintained within a homeostatic range. Here we describe a pronounced difference in the modulation of NMDA currents in two closely related hippocampal cell types, the CA1 and the CA3 pyramidal cells (PCs). Manipulations that increase intracellular Ca2+ levels strongly depressed NMDA currents in CA3 with only minor effects in CA1 PCs. Furthermore, activation of G(q)-coupled metabotropic receptors potentiated NMDA currents in CA1 PCs but depressed them in CA3 PCs. Interestingly, the CA3 type modulation of NMDARs could be converted into CA1-like behavior, and vice versa, by increasing Ca2+ buffering in CA3 cells or decreasing Ca2+ buffering in CA1 cells, respectively. Our data suggest that a differential Ca2+ sensitivity of the regulatory cascades targeting NMDARs plays a key role in determining the direction and magnitude of NMDA responses in various types of neurons. These findings may have important implications for NMDA receptor-dependent synaptic plasticity and the differential sensitivity of CA1 and CA3 PCs to NMDAR-dependent ischemic cell death.
منابع مشابه
Brief Communication Differential Calcium-Dependent Modulation of NMDA Currents in CA1 and CA3 Hippocampal Pyramidal Cells
Neuronal Ca 2 influx via NMDA receptors (NMDARs) is essential for the development and plasticity of synapses but also triggers excitotoxic cell death when critical intracellular levels are exceeded. Therefore, finely equilibrated mechanisms are necessary to ensure that NMDAR function is maintained within a homeostatic range. Here we describe a pronounced difference in the modulation of NMDA cur...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملNMDA receptors and the differential ischemic vulnerability of hippocampal neurons.
Transient cerebral ischemia causes an inhomogeneous pattern of cell death in the brain. We investigated mechanisms, which may underlie the greater susceptibility of hippocampal CA1 vs. CA3 pyramidal cells to ischemic insult. Using an in vitro oxygen-glucose deprivation (OGD) model of ischemia, we found that N-methyl-D-aspartate (NMDA) responses were enhanced in the more susceptible CA1 pyramida...
متن کاملD1/D5 modulation of synaptic NMDA receptor currents.
Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D(1)/D(5) receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D(1)/D(5) modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2004